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DEVELOPMENT OF CURVED-PLATE ELEMENTS FOR THE EXACT

BUCKLING ANALYSIS OF COMPOSITE PLATE ASSEMBLIES INCLUDING

TRANSVERSE-SHEAR EFFECTS

ABSTRACT

The analytical formulation of curved-plate non-linear equilibrium equations including

transverse-shear-deformation effects is presented.  The formulation uses the principle of

virtual work.  A unified set of non-linear strains that contains terms from both physical

and tensorial strain measures is used.  Linearized, perturbed equilibrium equations

(stability equations) that describe the response of the plate just after buckling occurs are

then derived after the application of several simplifying assumptions.  These equations

are then modified to allow the reference surface of the plate to be located at a distance zc

from the centroidal surface.  The implementation of the new theory into the VICONOPT

exact buckling and vibration analysis and optimum design computer program is described

as well.  The terms of the plate stiffness matrix using both classical plate theory (CPT)

and first-order shear-deformation plate theory (SDPT) are presented.  The necessary steps

to include the effects of in-plane transverse and in-plane shear loads in the in-plane

stability equations are also outlined.  Numerical results are presented using the newly

implemented capability.  Comparisons of results for several example problems with

different loading states are made.  Comparisons of analyses using both physical and

tensorial strain measures as well as CPT and SDPT are also made.  Results comparing the

computational effort required by the new analysis to that of the analysis currently in the

VICONOPT program are presented.  The effects of including terms related to in-plane

transverse and in-plane shear loadings in the in-plane stability equations are also

examined.  Finally, results of a design-optimization study of two different cylindrical

shells subject to uniform axial compression are presented.
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CHAPTER I

INTRODUCTION

1.1  Purpose of Study

Longitudinally stiffened plate structures occur frequently in aerospace vehicle

structures.  These structures can typically be represented by long, thin, flat or curved

plates that are rigidly connected along their longitudinal edges, see Figure 1.1.  The

designs for these structures often exploit the increased structural efficiency that can be

obtained by the use of advanced composite materials.  Therefore, the plates used to

represent the structure may consist of anisotropic laminates.  The buckling and vibration

behavior of this type of structure must be understood to design the structure.

Additionally, to satisfy the current demands for more cost-effective and structurally

efficient aerospace vehicles, these structures are frequently optimized to obtain an

optimal design that satisfies either buckling or vibration constraints or a combination of

these two constraints.  There is a need for analytical tools that can provide the analysis

capability required to optimize panel designs.

The VICONOPT computer code [1] is an exact analysis and optimum design

program that includes the buckling and vibration analyses of prismatic assemblies of flat,

in-plane-loaded anisotropic plates.  The code also includes approximations for curved and

tapered plates, discrete supports, and transverse stiffeners.  Anisotropic composite

laminates having fully populated A , B and D  stiffness matrices may be analyzed.  Either

classical plate theory (CPT) or first-order transverse-shear-deformation plate theory

(SDPT) may be used [2].  The analyses of the plate assemblies assume a sinusoidal

response along the plate length.  The analysis used in the code is referred to as ÒexactÓ



2

because it uses stiffness matrices that result from the exact solution to the differential

equations that describe the behavior of the plates.

Currently, VICONOPT approximates a curved plate by subdividing it into a series of

flat-plate segments that are joined along their longitudinal edges to form the complete

curved-plate structure, see Figure 1.2.  This procedure is analogous to the discretization

approach used in finite element analysis.  The code uses exact stiffnesses for the flat-plate

segments and enforces continuity of displacements and rotations at the segment

connections.  Thus, the analyst must ensure that an adequate number of flat-plate

segments is used in the analysis.  The next logical step in the development of the

VICONOPT code is to eliminate the need to approximate curved-plate geometries by

flat-plate segments by adding the capability to analyze curved-plate segments exactly.

By adding this capability, the accuracy of the solutions can be improved.  Furthermore,

since the curvature of a plate is modeled directly, there will be no need to determine if a

sufficient amount of flat-plate segments have been used to model the curved plate.

Another benefit of adding this capability is that the computational efficiency of the code

will be improved since only one stiffness calculation for the entire curved plate is

required, rather than the several that are currently required for the individual flat plates

that are used to approximate the curved plate.  This improvement in computational

efficiency is important for structural optimization.  In this report, the capability to analyze

curved-plate segments exactly has been added to the VICONOPT code.  The present

report will describe the methodology used to accomplish this enhancement of the code

and will present results obtained utilizing this new capability.

The procedure used in the present report is an extension of the procedure described in

[2].  This procedure involves deriving the appropriate differential equations of

equilibrium for the analysis of fully anisotropic curved plates, including transverse-shear-

deformation effects.  These coupled equations are of eighth-order if transverse-shear

effects are neglected, and of tenth-order if transverse-shear effects are included.  For the
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analysis of flat plates, the coupling of these equations occurs through the laminate

extension-bending B matrix; however, coupling can also be produced by including

curvature terms in the equilibrium equations.  The numerical solution technique that was

developed in [2] to solve such systems of equations will apply for either type of coupling,

and the stiffnesses of the plates are derived from the numerical solution to these

equations.

Several features have been added to the VICONOPT code as part of the present

report.  The current version of VICONOPT only analyzes flat-plate elements based on a

tensorial strain-displacement relation.  However, the choice of strain-displacement

relations can affect the contribution of prebuckling forces in curved plates.  Therefore, a

unified set of nonlinear strain-displacement relations that contains terms from both

physical and tensorial strain measures is used to derive the plate equilibrium equations.

The unified set of strains is used throughout the derivation of the equilibrium equations,

and the selection of either physical or tensorial strains is achieved by appropriately

setting coefficients in the equilibrium equations equal to one or zero.  The option to use

physical strain-displacement relations for the analysis of flat plates is included as well.

Another addition is the treatment of the effects of in-plane transverse and in-plane shear

loadings in the in-plane equilibrium equations.  These effects are currently ignored in the

VICONOPT code (see [1]).  In the present report, an in-plane transverse loading, denoted

N22, is a loading that acts perpendicular to the longitudinal edges of the plate.  The

present study has added the option to include the effects of these loadings in the in-plane

equilibrium equations.  Finally, either CPT or SDPT may be used.  The SDPT used in

VICONOPT and in the present report uses the usual first-order assumption that straight

lines originally normal to the centroidal surface are assumed to remain straight and

inextensional but not necessarily normal to the centroidal surface during deformation of

the plate.  All of these features have been implemented such that they are available for

use in the analysis of both flat and curved plates.
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1.2  Literature Review

The buckling and vibration analysis of assemblies of prismatic plates has received a

great deal of attention over the last thirty years.  One method of analysis for this class of

structure that has been studied extensively is the finite-strip method, FSM [3].  A popular

application of this method involves determining a stiffness matrix for each individual

plate in the assembly and then assembling those individual matrices into a global stiffness

matrix for use in determining the response of the entire structure.  This method is

therefore analogous in form to the finite element method [4].  The main difference

between the two methods is that the finite element method discretizes the individual

plates into elements in both the longitudinal and transverse directions.  The stiffness

matrix for each individual element is then calculated and assembled into a global stiffness

matrix.  In the FSM, the response of the plate in the longitudinal direction is represented

as a continuously differentiable smooth series that satisfies the boundary conditions at the

two ends of the plate.  Therefore, discretization of the structure is only required to be

performed in the transverse direction, and depending on the method being used,

discretization of the individual plates may or may not be required [3].

The work in the area of finite strip analysis of assemblies of prismatic plates may be

broadly classified based upon different characteristics of the analysis method used.  One

classification distinguishes whether the properties of the individual plates are derived by

direct solution to the equations of equilibrium or by application of potential energy or

virtual work principles, i.e., exact versus approximate methods.  Another classification

distinguishes whether classical plate theory (CPT) or first-order shear-deformation plate

theory (SDPT) is used in the analysis.  Finally, a distinction may be made as to whether

or not complex quantities are used in the development of the individual stiffness matrices.

A review of the literature in the area of finite strip analysis methods is presented below.

Approximate methods are discussed separately from exact methods.
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The approximate FSM was first proposed for the static analysis of plate bending by

Cheung in 1968 [5].  The approximate FSM involves subdividing each plate into a series

of finite-width strips that are linked together at their longitudinal edges in a manner

similar to that depicted in Figure 1.2.  Separate expressions for in-plane and out-of-plane

displacements as well as rotations about the in-plane x and y axes over the middle surface

of each strip are assumed.  Each of these fundamental quantities are expressed as a

summation of the products of longitudinal series and transverse polynomials [3].  The

longitudinal series are typically sinusoidal and are selected to satisfy displacement

conditions at the transverse edges of each strip that match the desired plate boundary

conditions along those edges.  The potential energy of an individual finite strip is then

evaluated, and the total potential energy of the plate is obtained by summing the potential

energies of the individual strips.  Following the application of any appropriate zero-

displacement boundary conditions at the longitudinal edges, the potential energy is

minimized with respect to each plate degree of freedom to generate the equilibrium

equations for the plate.  Displacements are then calculated for a given loading condition

using this system of equations.

The analysis of [5] utilized CPT for the static bending analysis of isotropic plates.  In

1971, Cheung and Cheung [6] applied the approximate FSM to the analysis of natural

vibrations of thin, flat-walled structures with different combinations of the standard edge

boundary conditions (i.e., clamped, simply supported, or free).  Their analysis was based

upon CPT and the displacements in the longitudinal direction were approximated using

the normal modes of Timoshenko beam theory to allow for various boundary conditions

on the transverse edges.

Przemieniecki [7] used an approximate FSM based upon CPT to calculate the initial

buckling of assemblies of flat plates subjected to a biaxial stress state.  This method only

considered local buckling modes since it assumed that the line junctions between plates

remained straight during buckling.  Plank and Wittrick [8] extended the work of
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Przemieniecki by considering global as well as local modes and by admitting a more

general loading state that included uniform transverse and longitudinal shear stress and

longitudinal direct stress that varies linearly across the width of the plate.  When in-plane

shear loading is present, a spatial phase difference occurs between the perturbation forces

and displacements which occur at the edges of the plates during buckling.  This phase

difference causes skewing of the nodal lines and is accounted for in [8] by defining the

magnitude of these quantities using complex quantities.  This method is referred to as a

complex finite strip method.

In 1977, Dawe [9 and 10] used an approximate FSM based upon CPT for the static

and linear buckling analysis of curved-plate assemblies.  The plates studied were

isotropic, and in-plane shear loads were not allowed.  Morris and Dawe extended this

analysis to study the free vibration of curved-plate assemblies in 1980 [11].

All of the analyses discussed thus far have been based upon CPT.  In 1978, Dawe

[12] presented an approximate FSM based upon SDPT [13] for the vibration of isotropic

plates with a pair of opposite edges simply supported.  Roufaeil and Dawe [14] and

Dawe and Roufaeil [15] extended this analysis to the vibration and buckling,

respectively, of isotropic and transversely isotropic plates with general boundary

conditions.  The latter two analyses admitted the general boundary conditions through the

use of the normal modes of Timoshenko beam theory, as was done in [6].

In 1986, Craig and Dawe [16] considered the vibration of single symmetrically

laminated plates using an approximate FSM based upon SDPT.  Dawe and Craig [17]

then extended this analysis to study the buckling of single symmetrically laminated plates

subject to uniform shear stress and direct in-plane stress.  This analysis allowed for

anisotropic material properties.  General boundary conditions were once again admitted

through the use of the normal modes of Timoshenko beam theory.  The analysis of [17]

was extended in 1987 to the vibration of complete plate assemblies [18].  However, it

was shown in this work that the problem size increased dramatically as attempts to
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increase the accuracy of the solution were made by further subdivision of the component

plates.

In 1988, Dawe and Craig [19] presented a complex FSM based upon SDPT for the

buckling and vibration of prismatic plate structures in which the component plates could

consist of anisotropic laminates and could be subject to in-plane shear loads.  This work

also made use of substructuring to create ÒsuperstripsÓ that eliminated the internal

degrees-of-freedom from each component plate.  This analysis was later extended to

consider finite-length structures [20 and 21] and to add multi-level substructuring to

couple several ÒsuperstripsÓ to further decrease the problem size.  Dawe and Peshkam

[22] also developed a complementary analysis to that presented in [20 and 21] for long

plate structures.  Analyses using both SDPT and CPT were presented.  This work also

added the capability to define eccentric connections of component plates.

Wittrick laid the groundwork for the exact FSM in 1968 [23].  The basic assumption

in this work is that the deformation of any component plate varies sinusoidally in the

longitudinal direction.  Using this assumption, a stiffness matrix may be derived that

relates the amplitudes of the edge forces and moments to the corresponding edge

displacements and rotations for a single component plate.  For the exact FSM, this

stiffness matrix is derived directly from the equations of equilibrium that describe the

behavior of the plate.  In [23], Wittrick developed an exact stiffness matrix for a single

isotropic, long flat plate subject to uniform axial compression.  His analysis used CPT.

Wittrick and Curzon [24] extended this analysis to account for the spatial phase

difference between the perturbation forces and displacements which occur at the edges of

the plate during buckling due to the presence of in-plane shear loading.  This phase

difference is accounted for by defining the magnitude of these quantities using complex

quantities.  Wittrick [25] then extended his analysis to consider flat isotropic plates under

any general state of stress that remains uniform in the longitudinal direction (i.e.,

combinations of bi-axial direct stress and in-plane shear).  A method very similar to that
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described in [23] was presented by Smith in 1968 [26] for the bending, buckling, and

vibration of plate-beam structures.

In 1972, Williams [27] presented two computer programs, GASVIP and VIPAL to

compute the natural frequencies and initial buckling stress of prismatic plate assemblies

subjected to uniform longitudinal stress or uniform longitudinal compression,

respectively.  GASVIP was used to set up the overall stiffness matrix for the structure,

and VIPAL demonstrated the use of substructuring.  In 1974, Wittrick and Williams  [28]

first reported on the VIPASA computer code for the buckling and vibration analyses of

prismatic plate assemblies.  This code allowed for isotropic or anisotropic plates as well

as a general state of stress (including in-plane shear).  The complex stiffnesses described

in [8] were incorporated, as well as allowances for eccentric connections between

component plates.  This code also incorporated an algorithm, referred to as the Wittrick-

Williams algorithm, for determining any natural frequency or buckling load for any given

wavelength [29].  The development of this algorithm was necessary because the complex

stiffnesses described above are transcendental functions of the load factor and half

wavelength of the buckling modes of the structure.  The eigenvalue problem for

determining natural frequencies and buckling load factors is therefore transcendental.

Further discussion of the Wittrick-Williams algorithm will be presented in Chapter III.

In 1973, Viswanathan and Tamekuni [30 and 31] presented an exact FSM based upon

CPT for the elastic stability analysis of composite stiffened structures subjected to biaxial

inplane loads.  The structure is idealized as an assemblage of laminated plate elements

(flat or curved) and beam elements.  The analysis assumes that the component plates are

orthotropic.  The transverse edges are assumed to be simply supported, and any

combination of boundary conditions may be applied to the longitudinal edges.  The

analysis was included in an associated computer code, BUCLAP2.  Viswananthan,

Tamekuni, and Baker extended this analysis in [32] to consider long curved plates

subject to any general state of stress, including in-plane shear loads.  Anisotropic material
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properties were also allowed.  This analysis utilized complex stiffnesses as described in

[8].  The analyses described in [26, 28, and 32] are very similar.  The differences between

the three are discussed in [28].

When applied in-plane shear loads or anisotropy is present, the assumption of  a

sinusoidal variation of deformation in the longitudinal direction is only exact for

structures that are infinitely long.  Significant errors for structures of finite length can

occur due to the skewing of nodal lines.  In 1983, Williams and Anderson [33] presented

modifications to the eigenvalue algorithm described in [29].  The modifications presented

in [33] allowed the buckling mode corresponding to a general loading to be represented

as a series of sinusoidal modes in combination with Lagrangian multipliers to apply point

constraints at any location on those edges.  Each sinusoidal mode is represented by an

exact stiffness matrix.  This technique allows infinitely long structures supported at

repeating intervals with anisotropy or applied in-plane shear loads to be analyzed.  Thus,

a panel supported at its transverse edges is approximated by one with a series of point

supports along those edges.  These modifications formed the basis for the computer code

VICON (VIpasa with CONstraints) described in [34].  However, the analysis capability

of VICON was limited to plates analyzed with CPT having a zero B matrix.  The VICON

code was later modified to include structures supported by Winkler foundations [35].  An

optimum design feature was also added in 1990 [36 and 37], and the VICONOPT

(VICON with OPTimization) code was introduced.

Anderson and Kennedy [2] incorporated SDPT into VICONOPT in 1993.  A

numerical approach to obtain exact plate stiffnesses that include the effects of transverse-

shear deformation was presented.  The generality of VICONOPT was also expanded in

[2] to allow for the analysis of laminates with fully populated A , B , and D  stiffness

matrices.
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1.3  Scope of Study

The analytical formulation of the curved-plate non-linear equilibrium equations

including transverse-shear-deformation effects are presented in Chapter II.  A unified set

of non-linear strains that contains terms from both physical and tensorial strain measures

is used.  The equilibrium equations are derived using the principle of virtual work

following the method presented by Sanders [38 and 39].  Linearized, perturbed

equilibrium equations that describe the response of the plate just after buckling occurs are

then derived after the application of several simplifying assumptions.  Modifications to

these equations that allow the reference surface of the plate to be located at a distance zc

from the centroidal surface are then made.

In Chapter III, the implementation of the new theory into the VICONOPT code is

described.  A derivation of the terms of the plate stiffness matrix using MATHEMATICA

[40] is presented.  The form of these terms for both CPT and SDPT is discussed.  The

necessary steps to include the effects of in-plane transverse and in-plane shear loads in

the in-plane equilibrium equations are also outlined.

In Chapter IV, numerical results are presented using the newly implemented

capability.  A convergence study using the current segmented-plate approach in

VICONOPT is performed for a simple example problem to obtain baseline results for use

in future comparisons.  Results comparing the computational effort required by the new

analysis to that of the analysis currently in the VICONOPT program are also presented.

Comparisons of results for several example problems with different loading states are

then made.  Comparisons of analyses using both physical and tensorial strain measures as

well as CPT and SDPT are made.  The effects of including terms related to in-plane

transverse and in-plane shear loads in the in-plane stability equations are also examined.

In Chapter V, the characteristics of the newly implemented curved-plate elements in

VICONOPT is presented.  A brief summary of the effects of several analytical features
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that have been implemented into VICONOPT is given.  Finally, potential future work in

this area is discussed.
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CHAPTER II

ANALYTICAL FORMULATION

In this chapter, the non-linear equilibrium equations are derived for a curved plate

including transverse-shear effects.  A unified set of non-linear strains that contain terms

from both physical and tensorial strain measures is used.  The equilibrium equations are

derived using the principle of virtual work following the method presented by Sanders

[38 and 39].  Linearized stability equations that describe the response of the plate just

after buckling occurs are then derived following the application of several simplifying

assumptions.  Modifications to these equations that allow the reference surface of the

plate to be located at a distance zc from the centroidal surface are then made.

2.1  Plate Geometry, Loadings, and Sign Conventions

The geometry of the basic plate element being studied is given in Figure 2.1.  This

figure depicts the orthogonal curvilinear coordinate system (x1, x2, x3) used in the present

analysis.  The x1- and x2-axes shown in the figure are along lines of principal curvature

and they have radii of curvature R1 and R2, respectively.  The x2-axis is normal to the

middle surface of the plate.  The first fundamental form of the plate middle surface is

given by

ds d d2
1
2

1
2

2
2

2
2= +a x a x (2.1)

where a1 and a2 are the Lam� parameters.  The coordinates x1 and x2 are measured as arc

lengths along the x1- and x2-axes, respectively.  The result of measuring the coordinates
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in this manner is that a1 = a2, = 1.  The sign conventions for buckling displacements,

moments, rotations, and forces are also shown in Figure 2.1.  The sign convention for the

applied in-plane loadings being considered and the relation of the reference surface of the

plate to the centroidal surface of the plate are shown in Figure 2.2.  Note that that

centroidal surface can be offset from the reference surface by a distance zc.  The

centroidal surface is defined to be located at the centroid of the face of the panel that is

normal to the x1-axis.  The loading N22 shown in this figure is referred to in the present

report as an in-plane transverse loading.

2.2  Strain-Displacement Relations

The nonlinear strain-displacement relations used for the present study are given by
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2 23 23 2
2

2
2e g f= = - -w

u

R
, (2.2e)

where the following notation for partial derivatives is used: 
¶

¶x

u
ui

j
i j= , .  The

displacement quantities in Eqs. (2.2a) through (2.2e) are displacements of the centroidal

surface of the plate.  The constants    B   ,    C   ,    E   ,    F   , and    H    are set equal to one and    G    is set

equal to zero in Eqs. (2.2a) through (2.2e) to use tensorial strain measures.  The constants

B   ,    E   , and    G    are set equal to one and    C   ,    F   , and    H    are set equal to zero to use physical

strain measures.  Note that the linear portions of the tensorial and physical strain

measures are identical.  To obtain Donnell theory from the strain-displacement relations

in Eqs. (2.2a) through (2.2e) the constants    B   ,    C   ,    E   ,    F   ,     G   , and     H     must be set equal to zero,

and all terms involving the quantities 
u

R
and

u

R
1

1

2

2
   must be neglected.  SanderÕs theory

[39] may be obtained by setting the constants    B   ,    C   ,    E   ,    F   ,    G   , and    H    equal to zero and

adding the term 
1
2

2fn  to Eqs. (2.2a) and (2.2b), where fn is the rotation about the normal

to the plate middle surface.

The tensorial strain measures used in the present study are those of Novozhilov [41].

These strains are obtained by taking the difference between the square of the arc length of

a line element in a body after deformation, (ds*)2, and before deformation (ds)2.  The

tensorial strain measures, ejk, are defined by the relationship

1
2

2 2ds ds d djk j k
*( ) - ( )é

ëê
ù
ûú

= e x x  i, j = 1, 3 (2.3)

The repeated indices in Eq. (2.3) indicate summation over i and j.  The physical strain

measures are strains that can be measured in the laboratory.  The physical strains used in
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the present report are derived in a manner similar to that presented by Stein in [42] and

they were communicated to the author in lines of curvature coordinates by Dr. Michael P.

Nemeth.1.  Physical extensional strains are defined as the ratio of the change in arc length

of a line element in a body, ds*, to the original length of that line element, ds,

e jj
j j

j

ds ds

ds
j=

( ) - ( )

( )
=

*

     ,1 2   (no summation) (2.4a)

Physical shearing strains are defined as the change in the angles between three line

elements that are orthogonal before deformation and are oriented in the direction of three

unit vectors, Ã *e j , after deformation.  The physical shearing strains are defined by the

following expressions

sin Ã Ã     * *g g12 12 1 2( ) » = ·e e (2.4b)

sin Ã Ã   ,    * *g gj j je e j3 3 3 1 2( ) » = · = (2.4c)

The definitions for the changes in curvatures of the centroidal surface used for both

theories are

k f11 1 1= - , (2.5a)

k f22 2 2= - , (2.5b)

k f f12 1 2 2 1= - +( ), , (2.5c)

These changes in curvatures are equivalent to those given by Sanders in [39] with the

terms involving rotations about the normal neglected.

                                                
1 Mechanics and Durability Branch, Structures and Materials, NASA Langley Research Center, Hampton, VA,
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2.3  Equilibrium Equations

The nonlinear equilibrium equations for the curved plate illustrated in Figures 2.1 and

2.2 are derived using the principle of virtual work [43].  This principle states that, if a

structure in equilibrium is subject to a virtual distortion while remaining in equilibrium,

then the external virtual work done by the external forces on the structure is equal to the

internal virtual work done by the internal stresses.  The principle of virtual work can

therefore be written in the form

T u ds f u dv dvi i
surface

i i
volume

ij ij
volume

d d s deò + ò = ò (2.6)

The present derivation uses the principle of virtual work in the manner of Sanders [38]

written in the following form
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ù
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úòò

+ + + - -[ ]ò

- + + - MM M d
c

12 1 22 2 1 0df df x-[ ]ò =  

(2.7)

The terms �12 and Äm12   are effective stress measures as defined by Sanders in [38].  The

terms Äq1 and Äq2  are also effective stress measures as defined by Cohen in [44].  The

uppercase terms in Eq. (2.7) are applied loadings on the boundary of the plate.

Substituting Eqs. (2.2a) through (2.2e) and Eqs. (2.5a) through (2.5c) into Eq. (2.7)

and integrating by parts results in
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For arbitrary displacements u1, u2, w, f1, and f2, the coefficients of the displacements in

the area integral in Eq. (2.8) are the five equilibrium equations.  The coefficients of the

displacement variables in the first line integral in Eq. (2.8) are the natural boundary
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conditions for an edge x1 = constant, and the coefficients of the displacement variables in

the second line integral are the natural boundary conditions for an edge x2 = constant.

2.4  Stability Equations

A set of perturbation equilibrium equations that govern the stability of the plate,

referred to herein as the stability equations, may now be written by taking the difference

between the equilibrium equations evaluated for an equilibrium state just prior to

buckling and an adjacent (perturbed) equilibrium state just after buckling has occurred.

Let the prebuckling state be represented by:

Ä ,  Ä ,  Ä ,  Ä ,  

Ä ,  Ä ,  Ä ,  Ä ,

,  ,  

n N n N n N m M

m M m M q Q q Q
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= - = - = - = - (2.9)

The minus signs in the loading terms reflect the sign convention used in which the

applied loads are opposite in direction to the loads that develop after buckling.  Let the

perturbed state just after buckling has occurred be represented by:
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11 11 11 22 22 22 12 12 12

11 11 11 22 22 22 12 12 12

1 1 1 2 2 2 1 1 2 2

= - = - = -

= - = - = -

= - = - + + +

(2.10)

where the lower case variables are perturbation variables.  Taking the difference between

the two equilibrium states represented by Eqs. (2.9) and (2.10), linearizing the resulting

equations for the perturbation variables, and applying the following simplifying

assumptions:

1) Prebuckling deformations, moments, and transverse-shear stresses are
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negligible

2) The in-plane prebuckling stress state is uniform

yields the following stability equations:
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m m q11 1 12 2 1 0, ,+ - = (2.11d)

m m q12 1 22 2 2 0, ,+ - = (2.11e)

The boundary conditions for an edge x1 = constant are
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du1 0=

or (2.12a)

n CN u
w
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or (2.12c)
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df1 0= or m11 0= (2.12d)

df2 0= or m12 0= (2.12e)

As will be discussed in Chapter III, a sinusoidal variation of displacements and forces is

assumed in the x1 direction.  Therefore, these boundary conditions are ignored herein.

The boundary conditions for an edge x2 = constant are

du1 0=

or (2.13a)
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or (2.13c)
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df1 0= or m12 0= (2.13d)

df2 0= or m22 0= (2.13e)

where the terms with a caret (^) are effective force quantities per unit length at an edge

x2 = constant.  The effective forces, Ã , Ã ,   Ãn n and q12 22 2  are equal to forces in the original

(undeformed) x1-, x2-, and x3-directions along the longitudinal edges of the plate

(x2=constant).  Introduction of these force quantities facilitates the derivation of the

stiffness matrix in Chapter III which relates the forces along the longitudinal edges of the

plate in the original coordinate directions to the corresponding displacements along those

edges.

The first three stability equations given in Eqs. (2.11a) through (2.11c) are now

written in a simplified form using the definitions of the effective forces per unit length

given in Eqs. (2.13a) through (2.13c)
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This form of these stability equations will be used herein.  Note that Eq. (2.14b) contains

the perturbation variables n12 and q2.  These variables are related to the effective forces,

Ã   Ãn and q12 2 , through Eqs. (2.13a) and (2.13c).

2.5  Stability Equations Transformed to the Plate Reference Surface

The stability equations given in Eqs. (2.11a) through (2.11e) describe the response at

the centroidal surface of the plate.  A superscript o may be added to the displacement

quantities in these equations to indicate that they are centroidal quantities. These

equations are now written such that they describe the response at the reference surface of

the plate, which can be located a distance zc from the centroidal surface, Figure 2.2.  To

write the stability equations at the reference surface, the following information is used:

1) The relations of the displacements at the centroidal surface, u and uo o
1 2  , to the

displacements at the reference surface, u1 and u2 are:

u u zo
c1 1 1= - f (2.15a)

u u zo
c2 2 2= - f (2.15b)

2) The relations of the moments at the centroidal surface, m m and mo o o
11 22 12,  ,   , to

the displacements at the reference surface, m m and m11 22 12,  ,    are:
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m m z no
c11 11 11= - (2.15c)

m m z no
c22 22 22= - (2.15d)

m m z no
c12 12 12= - (2.15e)

3) The following quantities do not vary with z:

N N N n n n q q and w11 22 12 11 22 12 1 2,  ,  ,  ,  ,  ,  ,  ,   

4) The applied in-plane stresses, N11, N22, and N12 act at the centroidal surface.

Substitution of Eqs. (2.15a) through (2.15e) into Eqs. (2.14a) through (2.14c) and Eqs.

(2.11d) and (2.11e) yields the following equations
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m m z n n qc11 1 12 2 11 1 12 2 1 0, , , ,+ - +( ) - = (2.16d)

m m z n n qc12 1 22 2 12 1 22 2 2 0, , , ,+ - +( ) - = (2.16e)

The natural boundary conditions are also rewritten after substitution of Eqs. (2.15a)

through (2.15e) into Eqs. (2.13a) through (2.13e).  For an edge x2 = constant, the natural

boundary conditions become
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m z nc12 12 0- = (2.17d)
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m z nc22 22 0- = (2.17e)

The last two stability equations, Eqs. (2.16d) and (2.16e), are now rewritten by

substituting expressions for the quantities n n11 1 12 2, ,+( )  and n n12 1 22 2, ,+( ) that can

be obtained using Eqs. (2.16a) and (2.16b), respectively, and the definitions for the

effective forces per unit length, Eqs. (2.17a) through (2.17c).  The definitions for the

effective forces are needed since the terms n12 and n22 that appear in the two above are the

perturbation values, not the effective forces.  Substitution of the expressions for the two

quantities above into Eqs. (2.16d) and (2.16e), respectively, yields the final form of the

last two stability equations
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The stability equations in the form given in Eqs. (2.16a) through (2.16c) and Eqs. (2.18a)

and (2.18b) are those implemented into the VICONOPT code.

2.6  Constitutive Relations

The present analysis allows for generally laminated composite materials.  The

geometry of a general, curved laminate is given in Figure 2.3.  As shown in the figure,

the number of layers in the laminate is nl, and the width of the laminate is b.  The radius

of curvature of the x2-axis, R2 is shown in the figure as well. .  The radius of curvature of

the x1-axis, R1 is not shown; however, its direction may be inferred from that of R2.  The

lamina coordinate system is the (x1Õ, x2Õ, x3) system and the laminate coordinate system is

the (x1, x2, x3) system.  The lamina coordinate system is aligned with the principal

material direction of the lamina, and the laminate coordinate system is aligned with the

principal geometric directions of the laminate.  The coordinate system for the kth lamina

is oriented at an angle qk with respect to the laminate coordinate system.  The stress-strain

relations in the lamina coordinate system for a lamina of orthotropic material in a state of

plane stress are
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where the [Q] matrix is referred to as the reduced stiffness matrix for the lamina and is

defined in [45] in terms of the elastic engineering constants of the lamina.  These

relations may be written in the laminate coordinate system by use of transformation

matrices as defined in [45].  The transformed relations are
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where the Q[ ] matrix is the reduced transformed stiffness matrix for the lamina.  Both of

Eqs. (2.19) and (2.20) may be thought of as stress-strain relations for the kth lamina in a

multi-layer laminate.  Therefore, Eq. (2.20) may be written as

s e{ } = [ ] { }k k kQ (2.21)

The constitutive relations for a thin, elastic laminated composite shell may now be

defined as
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where the resultant forces and moments acting on the laminate, {N} and {M},

respectively, are defined as
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where nl is the total number of layers in the laminate.  The extensional, coupling, and

bending stiffness matrices, A, B, and D, respectively, are defined as

A B D Q,  ,   ,  ,   ( ) = [ ] ( )òå
-= k

zk

zk

k

nl
d1 3 3

2

11
3x x x (2.25)

The analysis in VICONOPT allows for laminates with fully populated A , B , and D

matrices.

The constitutive relations for transverse shear used in VICONOPT are those

presented by Cohen in [44].  The constitutive relations for transverse shear are written in

inverted form as
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where [k] is a symmetric 2-by-2 transverse shear compliance matrix whose terms are

defined in [44].  The terms of the [k ] matrix were derived for general, anisotropic, multi-

layered composite shells and they are a generalization of results for a shell with a

homogeneous wall for which the transverse shear correction factor for the shear stiffness

is 5/6.  The procedure used in [44] for obtaining the terms of the [k] matrix follows.

Statically correct expressions of in-plane stresses and transverse-shear stresses were

derived in terms of the transverse-shear stress resultants and arbitrary constants that were

interpreted by Cohen as redundant ÒforcesÓ.  The expressions for in-plane stresses were

obtained using the constitutive relations given in Eq. (2.22) and linear distribution of in-

plane strains through the wall thickness.  The expressions of transverse-shear stresses

were obtained by integrating in the x3-direction the three-dimensional equilibrium

equations.  The transverse-shear stress resultants were then used to derive an expression

of the volumetric density of the transverse-shear strain energy.  A statically correct
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expression of the area density of the transverse-shear strain energy was then obtained by

integrating in the x3-direction this volumetric density.  The transverse-shear constitutive

relations given in Eq. (2.26) were then derived by applying CastiglianoÕs theorem of least

work [46] by minimizing the area density of the transverse-shear strain energy with

respect to the redundant forces mentioned previously.
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CHAPTER III

IMPLEMENTATION INTO VICONOPT

In this chapter, the implementation of the present theory into the VICONOPT code is

described.  Additional simplifications made to the theory are described first.  A

discussion of the use of the transverse-shear strain, g13, as a fundamental displacement

variable in the problem to maintain continuity of rotations at plate junctions is then

presented.  The derivation of an expression for the curved-plate stiffness matrix is

described.  The terms of matrices that are needed to calculate this stiffness matrix were

obtained using MATHEMATICA [40], and they are presented in Appendix A.  The terms

for both CPT and SDPT are presented, and the terms that result from the inclusion of

direct in-plane transverse and in-plane shear loads in the in-plane stability equations are

specified.  As stated previously, the implementation of the curved-plate theory into

VICONOPT follows very closely the method presented in Reference [2].  Therefore, the

following discussion is necessarily similar to that presented in that reference.

3.1  Simplifications to the Theory

Before proceeding with the derivation of the curved-plate stiffness matrix, a

discussion of several simplifications to be implemented is presented.  First, the theory

implemented into the VICONOPT code considers structures that are prismatic in the

longitudinal direction.  Therefore, for the curved plates being considered in the present

report, the radius of curvature in the longitudinal direction, R1, is infinite; and any terms

involving the quantity 
1

1R
 are zero.  Although these terms are set equal to zero for the

calculation of the terms of the stiffness matrix, they are retained for completeness in the
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theory presented in this chapter.  Another simplification to the theory involves limiting

the capability to locate the reference surface a distance zc from the centroidal surface.

This capability has only been implemented for the case where the effects of N22 and N12

loads in the in-plane stability equations are neglected.  The expressions for the stiffness

terms that result when N22 and N12 are included in the in-plane stability equations and zc

is non-zero are prohibitively long.  Therefore, in the derivation to follow, only the

following two cases are presented:

1) N22 and N12 are included in the in-plane stability equations and zc is zero (i.e.,

reference surface is coincident with the centroidal surface); and ,

2) N22 and N12 are neglected in the in-plane stability equations and zc is non-zero (i.e.,

reference surface may be translated from the centroidal surface).

3.2  Continuity of Rotations at a Plate Junction

One important issue to be addressed in the analysis of plate assemblies is the

continuity of rotations at a plate junction.  The original VIPASA code is based upon CPT,

and the theory only treats four degrees of freedom (DOF) at a longitudinal plate edge.

These DOF are the three displacement quantities, u1, u2, and w, and a rotation about the

x1-axis, f2.  Maintaining continuity of these DOF at a typical plate junction is very

straightforward.  However, when SDPT is considered, there are five DOF at a

longitudinal plate edge.  These DOF are the four from CPT as well as an additional

rotation, f1, that results from the inclusion of transverse-shear deformation.  Another

problem that must be addressed is that when two plates are joined together such that one

is rotated at an arbitrary angle, q, to the other, rotations about the normals to the

centroidal surfaces of the two plates must be included to satisfy continuity of rotations.

This rotation, fn, is not accounted for in the present plate theory.  The procedure used in
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VICONOPT to maintain continuity of rotations follows that used by Cohen in [47].  This

procedure introduces the shear strain, g13, as a fundamental displacement variable instead

of the rotation, f1.  The justification for using this approach is described subsequently.

    The displacements and rotations at a typical plate junction are shown in Figure 3.1.

The two plates, numbered 1 and 2, are shown viewed along the 1-axis, and it is obvious

that the u1 displacements are easily matched regardless of the orientation of plate 2.  The

displacements and rotations for which continuity must be maintained are u2, w, f1, and fn.

Upon inspection of Figure 3.1(a), the following expressions for coplanar plates (q = 0)

may be written as

u u2
1

2
2= (3.1a)

w w1 2= (3.1b)

f f1
1

1
2= (3.1c)

f fn n
1 2= (3.1d)

where the superscripts 1 and 2 refer to the plate numbers.  Similarly, upon inspection of

Figure 3.1(b), the following expressions for q = +90o may be written as

u w2
1 2= (3.2a)

w u1
2
2= - (3.2b)

f f1
1 2= - n (3.2c)

f fn
1

1
2= (3.2d)
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Finally, upon inspection of Figure 3.1(c), the following expressions for arbitrary q may

be written as

u u w2
1

2
2 2= +cos sinq q (3.3a)

w w cos u sin1 2
2
2= -q q (3.3b)

f f q f q1
1

1
2 2= -cos sinn (3.3c)

f f q f qn n
1 2

1
2= +cos sin (3.3d)

The rotation about the normal of a line element originally directed along the x1-axis is

shown in [48] to be

f
¶

¶xn
u

= 2

1
(3.4)

Using this definition, Eqs. (3.3c) and (3.3d) are written as

f f q q1
1

1
2

2 1
2= -cos sin,u (3.5a)

u u2 1
1

2 1
2

1
2

, , cos sin= +q f q (3.5b)

Using Eqs. (3.3a) and (3.3b) and the definition for g13, Eq. (2.2d), the previous two

equations may be written as

g q g13
1

13
2= cos  (3.6a)

0 13
2= -sin  q g (3.6b)
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The results shown in Eqs. (3.6a) and (3.6b) indicate that for plates that are not

coplanar (i.e., one plate oriented at an arbitrary angle, q, to the other), the shear strain, g13,

must be set equal to zero for each plate to maintain continuity of rotations.  Therefore, if

g13 is made a fundamental displacement quantity instead of f1, the shear strain can be set

equal to zero by simply striking out the appropriate rows and columns in the overall

stiffness matrix.  Performing this operation reduces the stiffness matrix to the same size

as that for CPT.  The VICONOPT code utilizes this procedure for plates that are not

coplanar.  For plates that are coplanar, i.e., q = 0, the shear strain in plate 1 is equal to

that in plate 2.  The VICONOPT code handles this situation by creating a substructure

using the two plates with all DOF present and eliminating the extra DOF before assembly

into the final stiffness matrix.

The use of the shear strain, g13, as a fundamental displacement quantity requires that

the  effective transverse-shear force per unit length, Ãq2 , be modified.  The modified

expression for Ãq2  is obtained from the natural boundary conditions for an edge

x2=constant, that are derived from the virtual work expression, Eq. (2.8), when g13 is used

as a fundamental displacement variable.  The modified expression is obtained by

replacing f1 with the expression w
u

R
,1

1

1
13- - g  in the boundary integral over x2 in Eq.

(2.8).  Performing this substitution, integrating by parts, and following the procedure

outlined in Section 2.6 yields the following modified definition for Ãq2 :

Ã , , ,q q N w
u z

R
N w

u z

R
m z nc c

c2 2 12 1
1 1

1
22 2

2 2

2
12 12 1= - -

-[ ]æ

è
ç

ö

ø
÷ - -

-[ ]æ

è
ç

ö

ø
÷ + -[ ]

f f
(3.7)
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The definition for Ãq2  given in Eq. (3.7) replaces that given in Eq. (2.17c).  Note that the

term m12,1 which appears in the Kirchhoff shear term of CPT is also present for the case

of SDPT when g13, is used as a fundamental displacement quantity.

3.3  Derivation of the Curved-Plate Stiffness Matrix

Throughout this section, reference is made to force quantities.  Although these

quantities are forces and moments per unit length, they are designated forces herein for

convenience.  The first step in implementing the present theory into VICONOPT is to

derive a stiffness matrix that relates the force quantities along the two longitudinal edges,

x 2 2
= ±

b
, to the displacements along those edges.  The desired force and displacement

quantities are in the direction of the original (undeformed) coordinates.  The

displacement variables are

d =

ì

í

ï
ïï

î

ï
ï
ï

ü

ý

ï
ïï

þ

ï
ï
ï

i u

u

w

i

 

 

1

2

2

13

f

g

(3.8)

where the shear strain, g13, has been introduced as a fundamental displacement quantity

instead of the rotation, f1.  The force variables that correspond to the displacement

variables given in Eq. (3.8) are

f =

ì

í

ï
ïï

î

ï
ï
ï

ü

ý

ï
ïï
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ï
ï
ï

i n

n

q

m

i m
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22

2

22

12

(3.9)
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Note that the effective forces at the boundaries, defined by Eqs. (2.17a) and (2.17b) and

Eq. (3.7), are being used as the force quantities since, as discussed in Chapter II, they are

equal to the forces in the direction of the original (undeformed) coordinates.

The problem may now be reduced to ordinary differential equations in y by assuming

that the response of the plate in the longitudinal x1-direction varies sinusoidally.

Therefore, if the displacements and forces in the plate are now considered to be functions

of x2, the variables of Eqs. (3.8) and (3.9) may be written as

Z zx x
p x

l
x1 2

1
2, exp

  
( ) =

æ
è
ç

ö
ø
÷ ( )

i
(3.10)

where

z
d

f
=

ì
í
î

ü
ý
þ

and l is the half-wavelength of the response in the x1-direction.  Since a sinusoidal

variation in the x1-direction is assumed, the vector z will involve the amplitudes of the

displacement and force quantities.  The imaginary number, i, has been used in Eqs. (3.8)

and (3.9) to account for the spatial phase shift that occurs between the perturbation forces

and displacements which occur at the edges of the plates during buckling for orthotropic

plates without shear loading and to result in real plate stiffnesses when using the

exponential expression of Eq. (3.10).

The next step in the derivation is to express all unknowns in terms of z.  A partially

inverted form of the constitutive relations, Eq. (2.22), is used to express the required

quantities as functions of the fundamental variables in d  and f or terms that may be

derived from the fundamental variables.  The partially inverted constitutive relations are
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where the linear portion of e11 from Eq. (2.2a) is used

e11 1 1
1

= +u
w

R,

The variables k11 and f1 were defined in Section 2.2 of Chapter II.  The constants  hij in

the first portion of Eq. (3.11) are calculated from the A, B, and D matrices defined in Eq.

(2.25).  The constants h77, h78, and h88 are shear stiffness terms and are calculated using

the theory presented in [44].

Another requirement of the present derivation is to express the relationship between

q2 and Ãq2  without any x2-derivatives.  This expression is

q

q N w
u z

R
N h m z n

N h

c
c

2

2 12 1
1 1

1
22 2 78 1 12 12 1

22 881
=

+ -
-[ ]æ

è
ç

ö

ø
÷ + -( ) + -[ ]

-

Ã , ,

f
f g

(3.12)

As with the stability equations, only the linear portion of the strain-displacement

relations are considered in the present derivation
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g12 1 2 2 1= +u u, , (3.13a)

e 22 2 2
2

= +u
w

R, (3.13b)

g f23 2
2

2
2= - -w

u

R
, (3.13c)

k f22 2 2= - , (3.13d)

k f f12 1 2 2 1= - +( ), , (3.13e)

The expression for k12 can be re-written after substituting expressions obtained for f1 and

f2 from Eqs. (2.5a) and (2.5b) and using the linear portion of e12

k g f
e

g12 2
1 2

2 2
1

12

1
1 2

1 1
2= - + +

æ

è
ç

ö

ø
÷ +

é

ë
ê

ù

û
ú + +

R R
u

R
,

, (3.13f)

Using Eqs. (3.11) and (3.12), the strain displacement equations, Eqs. (3.13a) through

(3.13d) and (3.13f) and the equations, Eqs. (2.16a) through (2.16c) and (2.18a) and

(2.18b) are written in terms of the elements of z as

T zÕ= P z or zÕ=T-1  P z (3.14)

where a prime denotes differentiation with respect to x2.  The square matrix T appears in

the present study as a result of the inclusion of the effects of N22 and N12 in the in-plane

equilibrium equations.  This matrix was shown to be the identity matrix when these terms

were neglected in [2].  The presence of off-diagonal terms in this matrix is a fundamental

difference between the present theory and that presented in [2].

The elements of z are now assumed to be given by
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z c
i

bj j=
æ
è
ç

ö
ø
÷exp

  b x 2 (3.15)

where b is a characteristic root of the differential equation.  The number of values of b is

equal to the order of the differential equation system.  Substitution of Eq. (3.15) into Eq.

(3.14) results in the following equation

(R  - bI ) c = 0 (3.16a)

where

R T P1= -b (3.16b)

and I is the identity matrix.  The vector c consists of the cj of Eq. (3.15).  The matrix R  is

obtained by premultiplying P  by T-1.  The eigenvalues of the matrix R  are the

characteristic roots of the differential equation.  This matrix is not symmetric; however, it

can be made real by multiplication or division of appropriate rows and columns by the

imaginary number, i.  The elements of the matrices T and P are given in Appendix A for

both SDPT and CPT.

For each eigenvalue of R , there exists an eigenvector, c.  A matrix C  may be defined

with columns as the eigenvectors, c, the upper half of each column, denoted a , will be

associated with displacements, and the lower half, denoted b , will be associated with

forces.  The form of C is therefore

C
a a . . . a

b b . . . b
1 2 j

1 2 j
=

é

ë
ê

ù

û
ú (3. 17)

The next step in the derivation is to write the amplitudes of the displacements and forces

at the two edges of the plate.  Quantities evaluated at x 2 2
= -

b
 are identified with a
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superscript 1 and quantities evaluated at x 2 2
= +

b
 are identified with a superscript 2 as

follows:

d a r
i

j jk k
k

k

N1

1 2
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 b
(3.18a)
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(3.18b)
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where the rk are constants determined from the edge values and N is the order of the

differential equation.  Equations (3.18a)-(3.18d) may be written in matrix form as

d
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Eliminating r from Eqs. (3.19) and (3.20) yields

f

f
K 

d

d

1

2

1

2

ì
í
î

ü
ý
þ

=
ì
í
î

ü
ý
þ

(3.21)

where K is the stiffness matrix given by

K = F E-1 (3.22)

As for the case of CPT, K is real and symmetric for orthotropic plates without in-

plane shear loading, and it is Hermitian otherwise.  Reference [2] presents a discussion of
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techniques used to ensure that accurate numerical results for K are obtained from Eq.

(3.22).

3.4  The Wittrick-Williams Eigenvalue Algorithm

A brief discussion of the analysis procedure used in VICONOPT is in order.  As

previously mentioned, VICONOPT uses a specialized algorithm for determining any

natural frequency or buckling load for any given wavelength [29].  The development of

this algorithm was necessary because the complex stiffnesses defined in the previous

section are transcendental functions of the load factor and half wavelength of the

buckling modes of the structure.  The eigenvalue problem for determining natural

frequencies and buckling load factors is therefore transcendental.

The iterative analysis procedure used in VICONOPT is described in [36].  For this

procedure, the plate stiffnesses for a given wavelength are evaluated at a series of trial

values of the eigenvalue being determined until convergence is attained.  This eigenvalue

is either the load factor for buckling or the natural frequency for vibration, and it is

different than the eigenvalues of the R  matrix of Eq. (3.16b).  Unless otherwise specified

by the user, the default initial trial value used in the VICONOPT code is one.  For each

trial value of the eigenvalue considered, the analysis requires the plate stiffnesses as well

as the number of eigenvalues that lie below the trial value for the entire plate assembly

assuming the longitudinal edges of each individual to be clamped.  A complete

description of the eigenvalue algorithm is given in [28].  Determining the number of

eigenvalues exceeded by a plate with clamped edges is very difficult except for very

specialized cases.  Therefore, the procedure developed in [28] is used.  This procedure

subdivides each plate into sub-elements with a small enough width such that none of the

eigenvalues of the sub-elements with clamped edges lie below the trial value.  A sub-

elements is then used as a substructure and is repeatedly doubled until the original plate

element is obtained.  Using a simple procedure at each doubling step [29], the number of
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eigenvalues that lie below the trial value for the complete plate is returned.  This

procedure is repeated for each plate in the assembly.  Using this information and other

information obtained from the stiffness matrix of the entire assembly, the total number of

eigenvalues for the entire plate assembly that lie below the trial value is obtained.  An

iterative procedure is then used to refine the trial value until the desired eigenvalue is

calculated to within the accuracy required.

One important piece of information required for the analysis procedure described

herein is the number of subdivisions required for each plate.  As seen in Appendix A, all

of the terms of the R  matrix are proportional to the plate width, b.  Therefore, all of the

eigenvalues of R  are proportional to b.  Furthermore, it is important to note that an

eigenvalue equal to p corresponds to buckling or vibration with simply supported

longitudinal edges.  By successively halving the value for b until all the real eigenvalues

of R  are less than p, a value for the width of the sub-elements for which no eigenvalues

lie below the eigenvalue for simply supported edges is determined.  This width also

guarantees that no eigenvalues for the sub-elements lie below the eigenvalue for clamped

edges.  This width is that used in the iterative analysis procedure described previously.
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CHAPTER IV

NUMERICAL RESULTS

In this chapter, numerical results are presented using the newly implemented curved-

plate analysis capability in VICONOPT.  Results from several example problems are

presented to verify the results obtained with this new capability.  A convergence study

using the segmented-plate approach in VICONOPT is performed for an isotropic

cylindrical shell subjected to uniaxial compression to identify a suitable number of

segments to be used when comparing results.  Results comparing the computational effort

required by the new analysis to that of the analysis currently in the VICONOPT program

are also presented for this example.  Comparisons of results for several curved plates

analyzed in Ref. [32] are then made.  The effects of including terms related to in-plane

transverse loads in the in-plane stability equations are examined using a long cylindrical

tube subjected to in-plane transverse loading.  Finally, the curved-plate analysis is used to

conduct a design-optimization study of a honeycomb-sandwich cylindrical shell

subjected to uniaxial compression.  Comparisons of analyses using both physical and

tensorial strain measures are made for selected examples, and, where appropriate, results

using CPT and SDPT are compared.

4.1  Convergence of the Segmented-Plate Approach

The convergence of results using the segmented-plate approach in VICONOPT is

examined for the case of an aluminum cylindrical shell subjected to uniaxial

compression, see Figure 4.1.  The values of the material properties used for this example

are E = 10.0 x 106 psi and n12 = 0.33.  The wall thickness, t, is 0.1 in., and the radius, R2 is

60 in.  As shown in Reference [49], the critical value for the stress resultant, N cr11 , for

the axisymmetric buckling of a long isotropic cylindrical shell is
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For n12 = 0.33, the critical half wavelength, lcr, for axisymmetric buckling is shown in

[49] to be
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Results illustrating the convergence of the VICONOPT segmented-plate results for

N cr11  as a function of the number of segments used to approximate the cylinder are

shown in Figure 4.2.  In this figure, the results of the segmented-plate analysis are shown

as the solid curve.  The theoretical value obtained from Reference [49] is shown as the

dashed horizontal line.  The value obtained using the present curved-plate analysis with

two curved-plate elements is shown as the open symbol.  All results in this figure are

calculated for the value of lcr given in Eq. (4.2).  The VICONOPT results presented in

this figure are obtained using CPT with tensorial strain measures.  As shown in Figure

4.2, the segmented-plate results converge to the theoretical value when 120 segments are

used.  Therefore, to ensure that converged results are obtained when the segmented-plate

approach is used to analyze the remaining example problems, sixty segments will be used

when analyzing curved plates with an included angle of 180 degrees or less, and 120

segments will be used when analyzing full cylinders.

This example problem is also used to study the computational requirements of the

new curved-plate analysis in relation to the segmented-plate approach.  A plot of

normalized CPU time as a function of the number of plate segments used in the

approximation is shown in Figure 4.3 for the segmented-plate analysis using either CPT

or SDPT.  The normalized CPU time shown in this figure is the CPU time required for
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the segmented-plate analyses normalized with respect to the CPU time required for the

curved-plate analysis using two curved-plate elements.  The horizontal dashed line is at a

normalized CPU time of 1.0, and it represents the curved-plate analysis results.  As

shown in the figure, to achieve convergence with 120 flat-plate segments requires

approximately 3.5 times and 16.7 times as much CPU time as the curved-plate analysis

for CPT and SDPT, respectively.  (For the analysis using SDPT, G12 = G13 = G23).  One

consideration to note at this time is that the segmented-plate analysis in VICONOPT is

implemented to handle the general case of variable geometry, stiffness and loading in the

x2-direction.  This approach is therefore not as computationally efficient as it could be for

the case of constant curvature, stiffness, and loading in that direction (as is the case for

the curved-plate analysis).  One approach to determining the additional computational

efficiency that may be obtained with the segmented-plate analysis involves defining a

single, small flat plate that is repeatedly doubled using the substructuring capability in

VICONOPT until the curved-plate segment is obtained.  This technique is referred to

herein as ÔdoublingÕ.  Results relating the computational effort of this approach to the

curved-plate analysis indicate that further reduction in the computational effort required

for the segmented-plate analysis can be obtained using this technique.  This result occurs

because the in-plane and out-plane equations are uncoupled in the segmented-plate

analysis, and analytical expressions for the plate stiffnesses can be used.  However, this

approach is currently not automated in the VICONOPT code, and a separate ÔdoublingÕ

effort would have to be made for every curved-plate segment in any given analytical

model.

4.2  Buckling of Curved Plates With Widely Varying Curvatures

The example problems presented in the next two sections are taken from Ref. [32],

and they are used to verify the results obtained using the new curved-plate analysis in

VICONOPT.  The positive sense of the applied in-plane loadings to be considered in all
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of the following examples is given in Figure 4.4.  The first example problem considered

studies the buckling of a symmetrically laminated curved plate with clamped longitudinal

edges as a function of the curvature of the plate.  The geometry of the plate is shown in

Figure 4.5.  As shown in the figure, the plate is constructed from symmetrically

laminated boron/epoxy plies with a [0/90/±45]s layup.  To allow for direct comparison of

results with those presented in [32], the SI units are used for this example and the

example in the following section.  The material properties for a boron/epoxy ply are

given in Table 1.

The following loadings are considered for this example problem: N11 only, N22 only,

N12 only, and combined N11 = N22 = N12.  The buckling of this plate subject to these four

different loadings was investigated while varying the value of the curvature parameter,

b
R t

2

2
, from 1 to 1000.  The values of b, R2, and b used for these analyses are summarized

in Table 2.  Both physical and tensorial strains are used with the new curved-plate

analysis, while physical strains only are used for the segmented-plate analysis.  The

analysis of [32] uses physical strains.  All analysis results presented in this section are for

CPT.  The terms involving N22 and N12 are included in the in-plane stability equations for

all analyses.  The results of this study are presented in Table 3 for N11 loading, in Table 4

for N22 loading, in Table 5 for N12 loading, and in Table 6 for combined N11 = N22 = N12

loading.  The critical values of the stress resultants presented in these tables were

calculated using for the values of 
l

b
 given in the tables.  These values of 

l

b
 were

presented in Reference [32].  The critical values of these stress resultants are also plotted

as a function of the curvature parameter in Figure 4.6 through Figure 4.9, respectively.

As shown in these tables, the present analysis compares very well with that presented in

[32] and with the segmented-plate analysis for widely varying values of the curvature
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parameter.  As shown in Tables 3 - 6, there is no appreciable difference in the results

obtained using physical and tensorial strains.

4.3  Buckling of an Unsymmetrically Laminated Curved Plate

This example problem includes the effect of bending-stretching coupling and shear-

extension coupling on the buckling of an unsymmetrically laminated curved plate with

simply supported longitudinal edges.  The geometry of the curved plate is shown in

Figure 4.10.  As shown in the figure, the laminate being studied consists of a 0.0508-cm.-

thick layer of 2024 aluminum that is reinforced on the inner surface with pairs of ±45o

boron/epoxy plies.  The material properties for 2024 aluminum are given in Table 1.  For

this example, the number of pairs of ±45o boron/epoxy plies is increased from one to

seven.  The analyses used for this example are identical to those used for the previous

example.  The critical values for buckling of the stress resultants N11 and N12 are

presented in Tables 7 and 8, respectively.  These values are also plotted as a function of

the number of boron/epoxy plies used in the laminate in Figure 4.11 and Figure 4.12,

respectively.  The agreement between all the analyses is very good.  As with the previous

example, there is no appreciable difference in the results obtained using physical and

tensorial strains.  Results were also computed using SDPT.  However, for the case of

seven pairs of pairs of ±45o boron/epoxy plies, the R/t ratio is still approximately 300,

and the effects of transverse-shear deformation are minimal.  Therefore, as expected, the

critical values for buckling of the stress resultants N11 and N12 were slightly less than

those for CPT, but the differences were less than 0.2 percent.  With regards to the CPU

time requirements for this example, the segmented-plate analysis using SDPT required

approximately 35 times as much CPU time as the curved-plate analysis for the case of 14

boron/epoxy plies.  Furthermore, the results obtained using the ÔdoublingÕ approach

described in Section 4.1 indicate that the computational efficiencies offered by that

approach were not realized for this example problem.  This result occurs because the
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coupling that occurs due to the unsymmetric laminate prevents the in-plane and out-of-

plane equations from being uncoupled, and the same numerical approach for calculating

the plate stiffnesses as that used for the curved-plate analysis must be used.

4.4  Effect of N22 Terms in the In-Plane Stability Equations

As stated previously, the original segmented-plate analysis in the VICONOPT code

neglects the effects of the terms involving N22 and N12 in the in-plane stability equations.

This example problem illustrates the effect these terms may have on the buckling of an

isotropic (aluminum) long cylindrical tube subjected to uniform external pressure.  The

material properties in English units for aluminum are given in Table 9.  The geometry of

this example problem is shown in Figure 4.13.  As shown in the figure, only half of the

tube is modeled since the buckling mode being studied is symmetric (i.e., two full waves

in the circumferential direction).  The pressure load is modeled as an applied N22 hoop

loading.  The value of the external pressure that would generate this hoop load is obtained

from the following expression [49]

p
N

R
= 22

2
(4.3)

Simitses [50] presents a detailed discussion of the buckling of a thin circular ring

uniformly compressed by external pressure.  When considering the behavior of the

pressure load as the ring buckles, Simitses describes three possible cases.  In Case 1, the

pressure load is assumed to remain normal to the deflected surface.  This loading is

referred to as a live pressure load.   In Case 2, the pressure load is assumed to remain

parallel to its original direction.  This loading is referred to as a dead pressure load.  In

Case 3, the pressure load is assumed to always be directed toward the center of curvature

of the ring.  This loading is referred to as a centrally directed pressure load.  Only Cases 1

and 2 will be discussed in the present report.
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In Reference [50], Simitses presents in-plane and out-of-plane stability equations for

the thin circular ring which may be rewritten in the notation used in the present report as

n
q

R
p w

u

R
pcr22 2

2

2
2

2

2
2 0, ,+ - -
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è
ç
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ø
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2
2 22 2 2 3 0, ,,- - -( ) - = (4.5)

where p2 and p3 are the perturbation values of the applied pressure load in the buckled

state in the x2- and x3-directions, respectively.  For the case of a live pressure load in

which the applied pressure is assumed to remain normal to the deflected surface, p2 and

p3 are (for small deformations)

p p w
u

R
and pcr2 2
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è
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ø
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For the case of a dead pressure load in which the applied pressure is assumed to remain

parallel to its original direction, p2 and p3 are

p and p2 30 0= = (4.7)

Substituting Eqs. (4.3) and (4.6) into Eqs. (4.4) and (4.5), yields the following stability

equations for the case of live pressure loading:

n
q

R22 2
2

2
0, + = (4.8)

q
n

R
N w

u

Rcr2 2
22

2
22 22

2 2

2
0,

,,- - -
æ

è
ç

ö

ø
÷ = (4.9)



51

Substituting Eqs. (4.3) and (4.7) into Eqs. (4.4) and (4.5), yields the following stability

equations for the case of dead pressure loading:
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For live pressure, the critical value of pressure is shown in [50] to be

p
EI

R
cr =

3

2
3 (4.12)

Therefore,

N
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Rcr22
2
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For dead pressure, the critical value of pressure is shown in [50] to be

p
EI

R
cr =

4

2
3 (4.14)

Therefore,

N
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Rcr22
2
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4
= (4.15)
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As discussed in Reference [49], results for the case of a long cylindrical tube uniformly

compressed by external pressure, may be obtained by considering an elemental ring of

unit width and using Eqs. (4.12) through (4.15) with E replaced by E/(1-n2) and I

replaced by t3/12.

External pressure loads are not included in the present analysis.  However, an

equivalent N22 loading may be calculated using Eq. (4.3). The present analysis treats the

applied loads as dead loads since no effort is made to modify the applied loads as the

plate deforms.  The stability equations in the x2 and x3 directions, Eqs. (2.11b) and

(2.11c) for the present analysis are written for a thin circular ring subjected to N22 loading

by ignoring any terms that involve N12, x1, or derivatives with respect to x1.  These

equations are
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Comparing Eqs. (4.9), (4.11), and (4.17), reveals that if physical strains are used in the

present analysis (i.e.,    F    = 0), the out-of-plane stability equation is identical to that given

by Simitses for both live and dead pressure loads.  Furthermore, the in-plane stability

equation for the live pressure load case is recovered by the present analysis if the N22

term is neglected in Eq. (4.16).  The dead pressure load case is seen to be recovered when

the N22 term is included in Eq. (4.16).  Comparing Eqs. (4.6), (4.7), and (4.16), shows that
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for the case of physical strains, the remaining term involving N22 is actually equivalent to

the component of a live pressure load in the x2 direction (see Eq. (4.6)).

Buckling results for this example are presented in Table 10.  The VICONOPT results

presented in this table are for physical strains.  As previously discussed, the VICONOPT

result when the N22 term is neglected in the in-plane stability equation corresponds to the

case of live pressure load, and the VICONOPT result when the N22 term is included in the

in-plane stability equation corresponds to the case of dead pressure load.  The results for

physical strains for the segmented-plate analysis always equal those for the case of dead

pressure load since the N22 term in the in-plane stability equation also involves 1/R2 and it

therefore drops out of that equation altogether.  These results illustrate the dramatic effect

that the N22 and N12 terms in the in-plane stability equations can have on the buckling

results for curved plates.

4.5  Design Optimization of a Cylindrical Shell Subject to Uniaxial

Compression

The final example utilizes the new curved-plate analysis with the design optimization

capability of VICONOPT to perform a structural optimization of two different cylindrical

shell concepts subject to uniform axial compression (N11 loading).  The two concepts are

solid-wall construction and honeycomb-sandwich construction.  The geometry of this

example problem is shown in Figure 4.14.  As shown in the figure, the facesheets of the

honeycomb-sandwich concept are aluminum, and the core is KorexTM aramid paper

honeycomb core [51].  The solid-wall concept is aluminum.  The material properties used

for the facesheets and core are presented in Table 9.

Before results for this example are presented, a discussion of the modeling technique

used to model this cylinder is presented.  An analysis of a complete cylinder was

performed using only one plate element with the new curved-plate analysis capability in



54

VICONOPT.  The cylinder is modeled by defining a repetitive cross-section in which

there is only one node that is connected to itself.  However, numerical problems were

encountered when analyzing closed cylinders with very small wavelengths.  The

following procedure was used to avoid this problem.  First, a 45¡ arc segment is defined.

Second, a 90¡ arc segment is defined as a substructure by connecting the original 45¡ arc

segment to itself.  Similarly, a 180¡ arc segment is constructed from two 90¡ arcs.

Finally, a 360¡ arc is constructed from two 180¡ arcs.  This substructure is then used to

define the repetitive cross-section of the cylinder as previously discussed.  This modeling

technique is used for all closed cylinders analyzed in the present report, and no numerical

problems were encountered when using this technique.

The design variables for the structural optimization are the thicknesses of the

facesheets and the core for the sandwich concept and the wall thickness for the solid-wall

construction.  There is no minimum-gage restriction for any design variables.  The

nominal values for these variables are 0.1 in., 0.5 in., and 0.1 in., respectively.  The

design constraints are that the strain in the facesheets or the solid wall cannot exceed

0.005 in/in and that the stress in the core cannot exceed 115 psi in the x1-direction and 55

psi in the x2-direction.  The results of this study, including the mass of the optimized

cylinder and the final values of the design variables are given in Table 11 for the

honeycomb-sandwich concept and in Table 12 for the solid-wall concept.  Results from

both CPT and SDPT are given in these tables.  The optimized mass values are also

plotted as a function of the applied loading in Figure 4.15.  As seen in the tables and the

figure, the values for optimized mass obtained using CPT are slightly less than those for

SDPT for the honeycomb-sandwich cylinder as the applied loading is increased.

However, the values for core thickness obtained using CPT are significantly less than

those for SDPT for the honeycomb-sandwich cylinder as the applied loading is increased.

These results are expected because CPT results in an overly stiff approximation since the
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effects of transverse-shear deformation are neglected.  This overly stiff approximation

results in higher buckling loads for a given core thickness.  Therefore, the core thickness

and the optimum mass obtained is less than that obtained using SDPT.  The optimized

mass values for the solid-wall construction are much greater than those for the

honeycomb-sandwich construction.  The results for CPT and SDPT are nearly identical

for the solid-wall construction, as expected.
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CHAPTER V

CONCLUDING REMARKS

The VICONOPT computer code is an exact analysis and optimum design program

that includes the buckling and vibration analyses of prismatic assemblies of flat, in-plane-

loaded anisotropic plates.  In the present report, the capability to analyze curved-plate

segments exactly has been added to the VICONOPT code.  Non-linear curved-plate

equilibrium equations have been formulated using the principle of virtual work, and

linearized stability equations that describe the response of the plate just after buckling

occurs were derived following the application of several simplifying assumptions.

Finally, modifications to these equations were made to allow the reference surface of the

plate to be located at a distance zc from the centroidal surface.

The analysis methodology described in the present report improves upon the existing

methodology in the VICONOPT code (referred to herein as the segmented-plate analysis)

which requires that curved-plate segments be subdivided into several flat-plate elements

that must be subsequently joined at their longitudinal edges to approximate the curved-

plate geometry.  The new analysis formulation allows either classical plate theory (CPT)

or first-order shear deformation plate theory (SDPT) to be used.  Furthermore, anisotropic

laminates having fully populated A , B, and D  stiffness matrices may be analyzed.  The

analysis described in the present report is an example of an exact finite-strip method

(FSM) since it uses a stiffness matrix that is derived by direct solution to the stability

equations.

One additional capability that has been incorporated into the VICONOPT code as part

of the present report is the option to use plate elements (flat or curved) that are based

upon nonlinear strain-displacement relations that contain terms from either physical or

tensorial strain measures.  A second capability that has been added is the ability to
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include the effect of terms associated with in-plane transverse and in-plane shear loading

in the in-plane stability equations.  The original VICONOPT code neglects these terms.

Results from the present curved-plate analysis capability compare very well with a

closed-form solution and the existing segmented-plate analysis for the buckling of a long

isotropic cylinder.  The present analysis also compares well with results from the

literature for symmetrically laminated curved plates with widely varying curvatures and

with unsymmetrically laminated plates that include the effect of extensional-bending and

shear-extension coupling.  No appreciable effects of using tensorial versus physical

strains are noted in these examples.  The present curved-plate analysis was also shown to

require significantly less computational effort than the segmented-plate analysis.  An

alternate approach for the segmented-plate analysis that offers additional computational

savings for certain classes of problems has been investigated.  However, this approach

requires greater user effort, and it is currently not implemented in the VICONOPT code.

A significant effect of either including or neglecting the terms associated with an

applied in-plane transverse loading (i.e., N22 loading) in the in-plane stability equations

was noted when analyzing a long cylindrical tube subjected to uniform external pressure.

The symmetry of the buckling mode for this problem allowed it to be modeled as a half

cylinder, and the pressure load was simulated with an equivalent hoop (N22) loading.  The

buckling results for this problem were shown to change by a factor of 3/4 when the terms

associated with the N22 loading were neglected in the in-plane stability equations.  This

result illustrates the effect that the treatment of the in-plane stability equations can have

on the buckling results for curved plates.

Finally, the present curved-plate analysis was used to conduct a design-optimization

study of two different cylindrical shells subject to uniform axial compression (N11

loading).  One shell was constructed from a honeycomb-sandwich wall construction, and

the other was a solid-wall construction.  The values of mass for the optimized solid-wall

design were consistently higher than those for the honeycomb-sandwich construction.
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However, there was no difference between results using CPT and SDPT for the solid-wall

cylinder.  The values of mass for the optimized honeycomb-sandwich cylinder using CPT

were slightly less than those for SDPT as the applied loading was increased.  However,

the values of core thickness for the optimized honeycomb-sandwich cylinder using CPT

were significantly less than those for SDPT as the applied loading was increased.  This

trend occurred because CPT results in an overly stiff approximation since the effects of

transverse-shear flexibility are neglected.  This overly stiff approximation results in

higher buckling loads and, thus, a lower optimum mass.

One area for future work includes retaining the curvature terms in the longitudinal

direction and implementing the capability to analyze shells of revolution.  The analysis

can also be modified to allow vibration analyses to be performed.  Another enhancement

that can be made to the present analysis is to remove the restriction that when the terms

associated with in-plane transverse and in-plane shear loading are retained in the in-plane

stability equations, the centroidal surface and reference surface must coincide.
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APPENDIX A

MATRICES FOR DETERMINING CHARACTERISTIC ROOTS

The eigenvalues of matrix R  in Eq. (3.16a) are the characteristic roots of the

differential equations describing the behavior of the plate.  The 10-by-10 matrix R  is

calculated from the matrices T and P as shown in Eq. (3.16b).  The non-zero elements of

the T matrix are

t t t t t t t t3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 1,
*

,
*

, ,
*

,
*

,
*

,
*

,= = = = = = = =

t E h N G h N11 33 22 23 121,
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The underlined terms given above and subsequently are those terms that drop out of the

equation when the effects of N22 and N12 in the in-plane stability equations are neglected.

The non-zero elements of the P matrix are
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S h N= -1 88 22

The expressions for the elements of the T  and P matrices for the case of classical

plate theory are obtained by setting the transverse-shear strains, g13 and g23, equal to zero

and using the resulting expression f1 1= w,  (recall that 
1

1R
 equals to zero).  The

partially inverted stress-strain relations given in Eq. (3.11), are modified such that m12

and k12 are interchanged.  For the classical case, only four stability equations, Eqs.

(2.16a), (2.16b), (2.16c), and (2.18a) are used since Eq. (2.18b) is satisfied by

incorporation into the final form of Eq. (2.16c).  The same steps used for the transverse-

shear case are followed to generate T and P matrices of order eight.  The elements of the

T and P matrices with a superscript * given previously for the transverse-shear case also

apply for the classical case if 1 is subtracted from any index greater than 4.  The non-zero

elements of the T matrix that are not given in the results for transverse shear are
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The non-zero elements of the P matrix that are not given in the results for transverse

shear are
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Table 1. Material properties for boron/epoxy plies and 2024 aluminum (SI units).
Material E11x10-10,

N/m2
E22x10-10,

N/m2
G12x10-10,

N/m2
n12 r, kg/m3

Boron/epoxy 20.69 1.86 0.48 0.21 2006.8
Aluminum 2024 7.38 7.38 2.76 0.33 2768.0

Table 2. Geometric parameters used to vary the curvature parameter, 
b
R t

2

2
.

b
R t

2

2
b, cm. R2, cm. b, degrees

1 24.4002 5760.3570 0.25264
5 24.4005 1152.1180 1.2632

10 25.4020 576.12905 2.5262
30 25.4185 192.2917 7.5738
50 25.4513 115.67310 12.6067

100 25.6036 58.53098 25.0633
300 27.1026 21.86161 71.0315
500 29.6186 15.66554 108.3281
700 32.6900 13.63059 137.4115

1000 37.7873 12.75046 169.8018
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Table 3. Critical value of stress resultant N11 for buckling of a symmetrically laminated long curved plate with clamped longitudinal
edges.

b
R t

2

2

l

b

N cr11 , N/m

Reference 32

VICONOPT, N cr11 , N/m
Physical strains Tensorial strains

Curved-plate theory Segmented-plate theory Curved-plate theory
1 0.75 9 788 9 857 9 857 9 857
5 0.69 11 434 11 511 11 511 11 511

10 0.58 15 426 15 522 15 552 15 552
30 0.38 36 578 36 818 36 818 36 817
50 0.32 56 750 57 120 57 119 57 119

100 0.26 101 540 102 220 102 214 102 218
300 0.19 241 585 243 024 242 973 242 984
500 0.16 324 986 326 894 326 794 326 795
700 0.13 366 870 368 915 368 788 368 773

1000 0.13 386 498 388 410 388 274 388 207
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Table 4. Critical value of stress resultant N22 for buckling of a symmetrically laminated long curved plate with clamped longitudinal
edges.

b
R t

2

2

l

b

N cr22 , N/m

Reference 32

VICONOPTa, N cr22 , N/m
Physical strains Tensorial strains

Curved-plate theory Segmented-plate theory Curved-plate theory
1 250 5 813 5 856 5 856 5 856
5 250 8 020 8 077 8 077 8 077

10 250 11 607 11 780 11 780 11 780
30 250 11 607 11 767 11 767 11 767
50 250 11 662 11 743 11 743 11 743

100 250 11 557 11 632 11 632 11 632
300 250 10 541 10 607 10 607 10 607
500 250 9 088 9 143 9 144 9 143
700 250 7 652 7 696 7 697 7 696

1000 250 5 866 5 887 5 888 5 887
a N22 terms included in the in-plane stability equations.
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Table 5. Critical value of stress resultant N12 for buckling of a symmetrically laminated long curved plate with clamped
longitudinal edges.

b
R t

2

2

l

b

N cr12 , N/m

Reference 32

VICONOPTa, N cr12 , N/m
Physical strains Tensorial strains

Curved-plate theory Segmented-plate theory Curved-plate theory
1 0.85 12 415 12 491 12 491 12 491
5 0.80 13 413 13 501 13 501 13 501

10 0.72 15 580 15 683 15 683 15 683
30 0.58 24 200 24 342 24 341 24 344
50 0.59 31 170 31 345 31 344 31 350

100 0.62 44 840 45 058 45 053 45 068
300 0.86 74 120 73 773 73 748 73 794
500 1.03 82 860 81 458 81 418 81 479
700 1.02 82 630 80 528 80 479 80 547

1000 1.32 75 630 72 204 72 160 72 217
aN22 and N12 terms included in the in-plane stability equations.
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Table 6. Critical value of stress resultant N11 = N22 = N12 for buckling of a symmetrically laminated long curved plate with clamped
longitudinal edges.

b
R t

2

2

l

b

Ncr, N/m

Reference 32

VICONOPTa, Ncr, N/m
Physical strains Tensorial strains

Curved-plate theory Segmented-plate theory Curved-plate theory
1 1.10 4 290 4 318 4 318 4 318
5 0.90 5 110 5 149 5 149 5 149

10 0.79 6 600 6 651 6 651 6 651
30 0.92 10 560 10 633 10 633 10 633
50 250 11 660 11 743 11 743 11 743

100 250 11 560 11 631 11 631 11 631
300 250 10 540 10 607 10 607 10 607
500 250 9 090 9 143 9 144 9 143
700 250 7 650 7 696 7 697 7 696

1000 250 5 880 5 887 5 888 5 887
aN22 and N12 terms included in the in-plane stability equations.
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Table 7. Critical value of stress resultant N11 for buckling of an unsymmetrically laminated long curved plate with simply
supported longitudinal edges.

N cr11 , N/m VICONOPT, N cr11 , N/m
Physical strains Tensorial strains

Number of B/E plies Reference 32 Curved-plate theory Segmented-plate theory Curved-plate theory
2 24 545 24 981 24 969 24 973
4 40 000 41 367 41 336 41 347
6 63 636 64 331 64 265 64 289
8 92 727 94 318 94 198 94 241

10 129 545 131 905 131 708 131 775
12 177 273 177 722 177 416 177 517
14 232 727 232 424 231 976 232 118

Table 8. Critical value of stress resultant N12 for buckling of an unsymmetrically laminated long curved plate with simply
supported longitudinal edges.

N cr12 , N/m VICONOPT, N cr12 , N/m
Physical strains Tensorial strains

Number of B/E plies Reference 32 Curved-plate theory Segmented-plate theory Curved-plate theory
2 7 273 8 070 8 066 8 070
4 14 318 16 346 16 336 16 345
6 26 818 28 830 28 811 28 829
8 43 182 46 229 46 194 46 229

10 66 818 69 265 69 205 69 264
12 95 454 98 668 98 573 98 666
14 130 454 135 180 135 037 135 177
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Table 9.  Material properties for aluminum and KorexTM honeycomb core (English Engineering units).

Material
E11x10-6,

lb/in2
E22x10-6,

lb/in2
G12x10-6,

lb/in2
G13x10-6,

lb/in2
G23x10-6,

lb/in2
n12 r, lb/in3

Aluminum 10.0 10.0 3.846 3.846 3.846 0.3 0.1
KorexTM H/C core 0.0001 0.0001 0.0001 0.012 0.004 0.3 0.00116

Table 10. Critical value of hoop stress resultant N22 for buckling of a long, isotropic cylinder subject to uniform external
compression (results are in lbs/in.).

Reference [49]
VICONOPT (physical strains)

Curved-plate analysis Segmented-plate  analysis
Live load Dead load N22 terms neglected N22 terms included N22 terms neglected N22 terms included
28.1180 37.4906 28.1180 37.4906 37.4950 37.4950

Table 11.  Design-optimization results for a honeycomb-sandwich cylinder subjected to N11 loading.
N11,
lb/in.

Classical plate theory (physical strains)
tfs, in. tcore, in. mass, lbm

Transverse shear plate theory (physical strains)
tfs, in. tcore, in. mass, lbm

1 000 0.010 0.310 213.53 0.010 0.313 213.85
2 000 0.020 0.334 397.00 0.020 0.339 397.43
3 000 0.030 0.324 576.88 0.030 0.331 577.64
4 000 0.040 0.280 753.17 0.040 0.349 760.47
5 000 0.050 0.270 933.02 0.050 0.367 943.44

10 000 0.100 0.250 1835.8 0.100 0.606 1873.2
15 000 0.150 0.194 2734.7 0.150 0.909 2809.7
20 000 0.200 0.135 3633.3 0.200 1.212 3746.3
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Table 12.  Design-optimization results for a solid-wall cylinder subjected to N11 loading.
N11,
lb/in.

Classical plate theory (physical strains)
twall, in. mass, lbm

Transverse shear plate theory (physical strains)
twall, in. mass, lbm

1 000 0.102 924.68 0.102 924.69
2 000 0.143 1296.8 0.143 1296.8
3 000 0.179 1622.0 0.179 1622.0
4 000 0.207 1873.8 0.207 1873.9
5 000 0.230 2082.1 0.230 2082.2

10 000 0.324 2931.8 0.324 2931.9
15 000 0.409 3697.5 0.409 3697.7
20 000 0.474 4291.3 0.474 4291.6
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Figure 1.1 Typical longitudinally stiffened plate structures.

Figure 1.2 Segmented representation of curved-plate geometry currently used by
VICONOPT.
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Figure 2.1 Curved-plate geometry and sign convention for buckling displacements,
rotations, moments, and forces.
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Figure 4.1 Long isotropic (aluminum) cylinder subjected to uniaxial compression.
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Figure 4.5 Symmetrically laminated curved plate with clamped longitudinal edges
subjected to applied in-plane loads.
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Figure 4.6 Critical value of stress resultant N11 for buckling of a symmetrically
laminated curved plate with clamped longitudinal edges.
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Figure 4.7 Critical value of stress resultant N22 for buckling of a symmetrically
laminated curved plate with clamped longitudinal edges.
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Figure 4.8 Critical value of stress resultant N12 for buckling of a symmetrically
laminated curved plate with clamped longitudinal edges.
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Figure 4.10 Unsymmetrically laminated aluminum and boron/epoxy (B/E) curved
plate with simply supported edges subjected to applied in-plane loads.
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Figure 4.11 Critical value of stress resultant N11 for buckling of an unsymmetrically
laminated aluminum and boron/epoxy (B/E) curved plate with simply
supported longitudinal edges.
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Figure 4.12 Critical value of stress resultant N12 for buckling of an unsymmetrically
laminated aluminum and boron/epoxy (B/E) curved plate with simply
supported longitudinal edges.
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Figure 4.13 Isotropic (aluminum) long cylindrical tube subjected to uniform external
pressure loading.
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